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CHAPTER 15 -- ELECTRICAL POTENTIALS

15.1)

a.)  The PROTON produces an electric field which, in turn, produces
an (absolute) electrical potential field.  For a point mass, the electrical
potential is V = kq/r, where q is the field producing charge, r is the dis-
tance between the charge and the point-of-interest, and where the sign of
q must be included (i.e., a negative charge produces a negative V) in the
equation.  For the proton, then:

Voutskirts = (1/4πεo)qp/r

     = (9x109 volt.m/C)(1.6x10-19 C)/(.5x10-10 m)
     = 28.8 volts.

b.)   Electrical potential energy (that is, potential energy--U--a charge has
due to its presence in an electric field) is related to electrical potential (V) by
V = U/q (by definition, voltage tells you how much potential energy per unit
charge exists at a point in an electric field).  Including the charge's sign:

Ue = qVoutskirts
      = (-1.6x10-19 C)(28.8 volts)
      = -4.6x10-18 joules.

c.)   Total energy is the sum of potential and kinetic energy.  For the
electron:

   Etot =        KE       +            U

=                  (1/2)mv2                     +      qVoutskirts
       = .5(9.1x10-31 kg)(2.25x106 m/s)2 + (-4.6x10-18 joules)

= -2.3x10-18 joules.

Note:   The negative sign suggests that the electron is in a bound state.

15.2)  A positive charge will move from higher to lower electrical potential
(i.e., higher to lower voltage).  By definition, electric field lines do likewise.  Equi-
potential lines will be perpendicular to the electric field lines.  I've put both
(answers to Part a and b) on the sketch shown on the next page.
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15.3)  Note that α particles are positively charged (two protons worth) and
have four times the mass of a proton.  When released in an electric field, an α
particle will accelerate in the direction of the electric field.

a.)  Assuming the electrical potential at the final point is zero volts,
the electrical potential at the beginning will be 18x106 volts.  The
relationship between the absolute electrical potential at a point and the
amount of electrical potential energy a charge q has when at the point is:

V1 = U1/qα
          ⇒     U1 =            qα                V1         

             = [2(1.6x10-19 C)][18x106 v]
          ⇒     U1 = 5.76x10-12 joules.

b.)   But by definition, the work per unit charge is the same as the
voltage difference between the two points (i.e., W/q = -∆V).  That means
the work per unit charge is -(0 - 18x106 volts) = 18x106 volts.  Note that
this is sometimes referred to as 18 Megavolts.
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c.)   This is a conservation of energy problem!

      ΣKE1 +         ΣU1        + ΣWext =               ΣKE2                 + ΣU2
        (0)    + (5.76x10-12 j) +   (0)    = (1/2)[4(1.67x10-27 kg)]v2 +  (0)

  ⇒     v = 4.15x107 m/s.

15.4)  The sketch below summarizes the information given in the problem.

a.)  Electric field lines
always proceed from higher to
lower electrical potential.  As
such, voltage VA < VB.

b.)   Because the line
connecting Points D and E is
perpendicular to the electric
field lines, VD = VE.  Knowing
VD, we can write:

  ∆V            = -     E . d
(  VD   -   VA  )  = -E dAD cos 0o

(320 v - 340 v) = -(80 v/m) dAD
        -20 = -80dAD

   ⇒     dAD = .25 m.

c.)   The same relationship used in Part b can be used to determine VB:

∆V = -E . d
 (VA - VB) = -E d cos 0o

      (340 v - VB)  = -(80 v/m) (.25 m)

   ⇒     VB = 360 volts.

d.)  Determining VC the most educationally interesting way:  If the
distance between Points A and B is .25 meters, and if C is half-way be-
tween those two points (vertically), and if the distance from D to A is .25
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tan   (.5/.375) = 53.13
o-1meters (calculated in Part b), then the

vertical distance between Points D and
C is .25 + .25/2 = .375 meters, the ac-
tual distance is (.52 + .3752)1/2 = .625
meters, and the angle between a line
from C to D and the vertical (i.e., in
the direction of the electric field) is
53.13o (see sketch).  With all that information, we can write:

∆V = -E . d
 (VD - VC) = -E d cos φ

       (320 v - VC)  = -(80 v/m) (.625) cos (53.13o)

    ⇒     VC = 350 volts.

An alternative approach is to notice that Point C is halfway between
Points A and B (at least as far as the electric field is concerned).  As you
know the voltages of those two points, Vc should be halfway between those
two voltages.

e.)   Potential energy is related to voltage at a point by VA = UA/q.
This implies that:

     UA = qVA
= (6x10-6 C)(340 v)
= 2.04x10-3 joules.

f.)   Work per unit charge is related to voltage differences as W/q = -∆V.
That means:

   W/q = -(VE - VA)
= -(320 v - 340 v)
= 20 joules/C.

g.)  Starting with W/q = -∆V, we can write:

    W/q = -(VB - VA)

⇒     W = -q(VB - VA)

  = -(6x10-6 C)(360 v - 340 v)
          = -1.2x10-4 joules.
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h.)  If VA had been 340 volts and VB had been 290 volts:

i.)  Electric fields go from high to low voltages, so the electric field
would have been reversed (i.e., it would have been toward the top of
the page); and

ii.)   The field intensity function would have been:

VB - VA = -E.dAB
(290 v - 340 v) = - E(.25 m) cos 0o

⇒     E = 200 nt/C           (or 200 volts/meter).

15.5)  The square is shown to the right.  It will be useful to know the net
electrical potential at one corner (Vcorn) and the net electrical potential at the
center (Vcen).  As both charges are positive and
equal, and as relevant distances are symmetric,
the electrical potential values we need are:

   Vcen = [1/(4πεo)]q/rcen + [1/(4πεo)]q/rcen
 = 2[(9x109)(10-16 C)/(.28)]
 = 6.43x10-6 volts.

  Vcorn = [1/(4πεo)]q/rcorn + [1/(4πεo)]q/rcorn
 = 2[(9x109)(10-16 C)/(.4)]
 = 4.5x10-6 volts.

This is a conservation of energy problem with
Ucorn = qVcorn, etc.

 ΣKEcen +  ΣUcen  + ΣWext  =       ΣKEcorn       +           ΣUcorn
 (0)      + q1Vcen  +  (0)      =      (1/2)mv2       +           q1Vcorn
(10-18 C)(6.43x10-6 volts) = .5(7x10-22 kg)v2+ (10-18 C)(4.5x10-6 volts)

⇒     v = 7.43x10-2 m/s.

15.6)

a.)  This is one of those problems in which the set-up is primary while
the actual evaluation of integrals is secondary.  Because the geometry is
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complicated and we no
longer have symmetry at
our disposal, we will deal
with the top half of the
rod, then go to the bottom
half.

The figure to the right
shows the situation for a
differential charge dq =
(λ)da on the upper part of
the rod.  Using that
sketch, the net electrical
potential for the charge from a = 0 to a = L becomes:
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The figure to the right
shows the situation for dq on
the lower part of the rod.  Using
that sketch and noting that a is
defined as a positive number
(that means the limits of inte-
gration must be from a = 0 to a
= +L --see how a is used in the
definition of r on the sketch),
the net electrical potential for
the charge on the lower half of
the rod will have an expression
that is very similar to the ex-
pression derived for the upper
half of the rod.  That expression
is:
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Having set up the problem and generated the integrals to be solved,
limits and all, this is as far as we really have to go.  But for those
stalwarts who would like to see the final solution, continue on:

The integral in both the upper rod and lower rod cases has the form:

                 
  

1
k1a

2 + k2a + k3[ ] da∫ .

The solution to an integral of this form is:
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Evaluating for the bottom half, we must substitute in k1 = 1, k2 = 2y, k3 =

(x2 + y2), and solve:

    

V
x y a

da

a y a x y a y

L y L x y

bot
o

a

L

o a

L

o

=
π + +[ ]

=
π

+ + +( ) + +





=
π

+ + +( ) +

=

=

∫λ
ε

λ
ε

λ
ε

4
1

4
1

1
2 2 2 2

4
2 2 2

2 2 1 20

1 2
2 2 2 1 2

0

2 2 2 1 2

( )

( )
ln ( ) ( ) ( )

ln ( ) ( )

/

/

/

/

     

     LL y x y y+ − +( ) +





( ) ln ( ) .
/

2 2 22 2 1 2

Assuming x and y are positive (this makes the quantity inside the
absolute value positive, hence allowing us to drop the absolute value sign),
the expression for the electrical potential at the point (x,y) due to the
BOTTOM HALF OF THE BAR becomes:

           

  

Vbot = λ
4πεo

ln
2 L2 + (2y)L + (x2 + y2 )( )1/2

+ 2L + (2y)

2 x2 + y2( )1/2
+ (2y)












.
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For the top half, we must substitute k1 = 1, k2 = -2y, and k3 = (x2 + y2),
into our general-form expression for this kind of integral.  Assuming x and
y are both positive (again, to allow us to drop the absolute value sign), we
get:

             

  

Vtop = λ
4πεo

ln
2 L2 + (−2y)L + (x2 + y2 )( )1/2

+ 2L + (−2y)

2 x2 + y2( )1/2
+ (−2y)












.

The net electrical potential field at point (x, y) is the sum of Vtop and Vbot.

Note:   There is an interesting way to check these equations.  In the text, we
determined the electrical potential for this configuration specifically at x = b, y =
0.  If we evaluate our expression for the bottom half, then double what we get to
include the top half (the function will be symmetric at those coordinates), we get:
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Substituting in λ = Q/(2L) gives us the same function we determined in
the text.

b.)   With the electrical potential function V, we could use minus the
del operator to determine E.

15.7)  Using the del operator, we get:
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15.8)
a.)  The electric potential should be zero where the electric field is zero

(if there is such a place).  In this case, that will occur at x = ∞, y = ∞.

b.)  Using those coordinates for our zero electrical potential point, we
can write:
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15.9)
a.)  The electric field close to the surface of a large conducting sheet is

constant and perpendicular to the sheet's face.  As equipotential lines
(and surfaces) are perpendicular to electric field lines, the surfaces
themselves will be parallel to the sheet's face.  As the electric field is a
constant, the spacing between surfaces at regular voltage intervals will be
uniform.

b.)   The electric field close to a conducting surface is σ/εo (this was
derived in the text).  The relationship between a constant electric field and
an electrical potential difference within the field is:

         ∆V = −E • d ,

where ∆V is the voltage difference over a distance d.  Remembering that a
move from higher to lower electrical potential produces an electrical
potential difference that is negative, we find that in this case ∆V = - 12
volts.

With this, we can determine the distance d over which ∆V = -12 volts;
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15.10)  The relationship between a known electric field E and its associated
electrical potential function is:

    
    
∆V = − E • dr∫ .

From this, we can see that an electrical potential difference, hence electrical
potential function, is related to the area under the electric field versus position plot.
As areas change continuously, an electrical potential function must be continuous.

The relationship between a known electrical potential function V and its
associated electric field E is:

           E = −∇V .

From this, we can see an electric field is related to the slope of its electrical poten-
tial versus position plot.  As electrical potential functions can change abruptly,
their slopes are not always continuous (hence electric field functions do not have
to be continuous).  This shouldn't be surprising as any force related function can
be discontinuous from point to point.

15.11)  The sketch to the right shows
the set-up.  We need to determine the
electric field between the plates before
we can use:

       
    
∆V = − E • dr∫ .

Noticing that negative charge will
accumulate on the inner rod with the
opposite of that charge on the outer
wall, and assuming a cylindrical
Gaussian surface of length L and radius
r (between R1 and R2), we can write:
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Electric fields go from positive to negative charges.  The inner rod (radius
R1) has negative charge on it and has an electrical potential of zero due to its
connection with the battery.  That means that as we proceed from the inner rod
outward, we move against the electric field set up in that region.  With this
information, and noting that r is a unit vector directed away from the central
rod:
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Does this expression make sense?  One way to check the expression is to
see what it predicts for a voltage at a point we know.  At R1 on the inside rod,
the electrical potential is supposed to be zero.  Putting r = R1 into our expres-

sion, we get ln(R1/R1 ).  This equals zero--the defined electrical potential for the
rod.  So far, so good.

Another way to check our expression is to consider a test charge put in the
field.  That is, if a positive test charge is placed at the outer pipe (i.e., at Rbig)
and we allow it to accelerate toward the central rod (i.e., to Rsmall), the work
done by the field should be positive.  Does our derived electrical potential
function predict that?  (The work should be positive).

Doing the calculation yields:
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The right-hand quantity in the brackets is larger, which means the work done
will be positive as expected.

15.12)  The 2Q's worth of free charge will move to the outside of the conduc-
tor.  In addition to that, -Q's worth of charge will migrate to the inside of the
conductor in response to the presence of the +Q's worth of charge hanging at the
center of the configuration, leaving an additional +Q's worth of charge on the
outer surface of the conductor.  Summarily, there will be +3Q's worth of charge
on the outside surface, -Q's worth of charge on the inside surface, and +Q's  worth
of charge hanging at the center.  We can use Gauss's Law to determine the elec-
tric fields in the various regions.  Without showing the work, they are:
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Assuming the electrical potential is zero at infinity, the electrical potential
functions are as follows:
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Inside the conductor:
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Summarizing our information:

range electric field electrical potential

for r < R1   
E = Q

4πεo

1
r2

  
V(r) = Q

4πεo

1
r

− 1
R1

+ 3
R2











inside the conductor   E = 0
  
V(r) = 3Q

4πεoR2

for r > R2   
E = 3Q

4πεo

1
r2

  
V(r) = 3Q

4πεor

The graph of this information is shown on the next page.
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